Proximity Reader UR110 Instruction Sheet

Proximity Reader UR110

The UR110 is a very high performance proximity reader featuring medium range and small dimensions. The unit will run from any voltage from $7.5\sim12~V~(DC)$. The UR110 also features good read range at 7.5~Volts, making it ideally suited to a wide variety of applications, particularly access control.

Power Requirements 7.5~12 Volts regulated DC at 75 mA typical with a 12V supply.

A linear regulator is recommended.

Interface Wiegand, Magstripe, 19.2K Baud Serial ASCII (RS232)

Or special to customer specifications.

Typical Maximum Read Range8~9.5 cm at 7.5~12V with EM card.

In ideal conditions

Frequency 125KHz standard

Transponder Read Only (For Unique Serial Number / Unique Identifier)

Audio/Visual Indication Internal LED and Buzzer

Additional Control 2 Digital input and 2 Digital output.

Dimensions UR110-00 10 x 3.2 x 1.6 cm

UR110-01 8.7 x 3.2x 1.6 cm

Operating Temperature -10 to 60 Deg C.

Interface Cable 15 cm

Output Assignment

Red Power 7.5-12 Volts

Black Power Grand
Gray Digital output1
Blue Digital output2

Green RS232 TX (transmit), Magstripe data & Wiegand 0, with internal 4k7

Pull up (pull up only for Wiegand and Magstripe)

White RS232 RX (receive), Magstripe clock & Wiegand 1, with internal 4k7 pull up

Orange Card Present Output with internal 4k7 pull up

Brown Digital input1
Purple Digital input2
Yellow Program Inout

Output Format

The output format can be customer programmed . The available formats are Wiegand , Magnetic Emulation and Serial ASCII (RS232)

Wieg	gand	Magst	ripe
Red	Power 7.5-12V	Red	Power 7.5-12V
Black	Ground 0V	Black	Ground 0V
White	Data 1	White	Clock (Strobe)
Green	Data 0	Green	Data
Yellow	Connect to White	Orange	Card Present
Orange	No Connection	Yellow	Connect to Orange

Serial ASCII (RS232)

Red Power 7.5-12V

Black Ground 0V

Green TX Data

Yellow No Connection

White No Connection

Orange No Connection

Data Structure (Serial ASCII)

Baud Rate: 19200, N, 8, 1

STX(02 HEX)	DATA(10 HEX CHARACTERS)	CR	LF	ETX(03 HEX)	
-------------	---------------------------	----	----	-------------	--

The start character is factory defined as an 'STX' (02 HEX). This is followed by 10 Hex characters of data. The CR\LF characters serve to bring the received screen text back to the left hand side and on the line below after the data bytes have been sent. The 'ETX' (03 HEX) character denotes the end of the current transmission.

Data Structure (Magstripe Emulation, ABA Track 2)

Speed: Simulated to 56 IPS (Inch per Second)

10 LEADING ZEROS	SS	DATA (12 DIGITS)	ES	LRC	10 TRAILING ZEROS
------------------	----	------------------	----	-----	-------------------

The 10 leading zeros prepare the receiving unit to accept the data. The data is 12 digits long. SS is the Start Sentinel consisting of 11010.ES is the End Sentinel consisting of 1111.LRC is the Longitudinal Redundancy Check character. Lastly there are 10 trailing zeros. Magstripe 8 digits and 6 digits are available for special request .

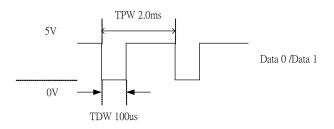
The hexadecimal data from the card is first converted to a denary string before transmission. For example, a card containing the hexadecimal data (60ABE67A88), will be converted to denary and sent as denary 415200869000(12 digits)

The calculation is performed as follows.

$$(2*16^{0} + 15*16^{1} + 15*16^{2} + 9*16^{3} + 10*16^{4} + 7*16^{5} + 7*16^{6} + 15*16^{7}) = 4152008690$$

Data Structure (Wiegand Format-26 Bit)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
P	S	S	S	S	S	S	S	S	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	P
P	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е													
													О	О	О	О	О	О	О	О	О	О	О	О	P
	SUMMED FOR EVEN PARITY (E)									SU	MM	ED	FOR	OD	DD P	ARI	TY	(O)							


Note:

- P Parity (Even or Odd) Start Bit and Stop Bit
- S Site Bits from Card or Reader
- C Card Data

Wiegand Data Timing Specification

Pulse Interval (TPW)=2.0mS +/- 3%

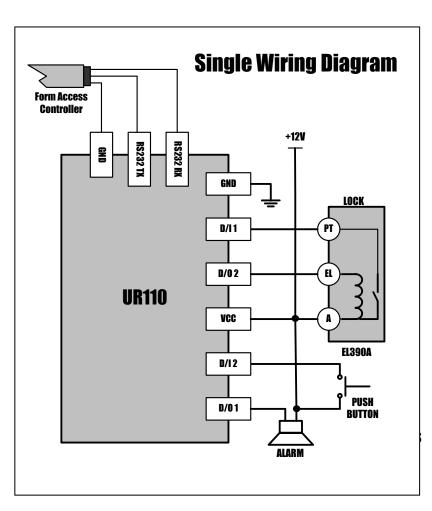
Pulse Width (TDW)=100uS +/-3%

APPLICATION NOTE

Host to UR110

STX 'D' CR	STX	'D'	CR
------------	-----	-----	----

Host form UR110


STX	'A'	,	'UR110'	,	CR
-----	-----	---	---------	---	----

Host to UR110

STX	ʻJ'	n	CR

Host form UR110

n	Description				
5~A	(Hi~Lo) Beep -				
В	D/O1 On				
С	D/O1 Off				
D	D/O2 On				
Е	D/O2 Off				

